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Abstract

The Hudson Raritan Estuary (HRE), located south of New York City, has a well

documented history of cultural eutrophication and associated harmful algal blooms (HABs).

HABs in general can cause economic and ecological damage through development of hypoxic

conditions and various toxins which in turn lead to fish kills and economic losses. To our

knowledge, our lab has the longest continuous monitoring record of water quality and plankton

in this system, representing 12 years of monthly sampling (April - November). Of the 13 species

identified in the system as capable of causing harmful algal blooms, Heterosigma akashiwo was

selected as the focus of the project. Prior studies in this system suggest H. akashiwo is the most

frequent blooming species and regularly degrades the HRE by developing hypoxic conditions.

The first objective of this paper is to use the random forest (RF) modeling technique to

accurately forecast the occurrence of H. akashiwo blooms in the HRE to inform future

management of the system. Dissection of the RF model will also provide insight into the best

biotic and abiotic predictors of H. akashiwo blooms. The finalized RF model appears to predict

correct classification of future HAB events moderately well (prediction error ~12%). Important

predictors within the model include river discharge, precipitation, Heterocapsa rotundata

abundance, Chlamydomonas spp. abundance, ferrous iron. The second objective was to

summarize trends in water quality over the sampling period through nonparametric time series

analysis using Seasonal Mann-Kendall and Theil-Sen’s slope estimation. Results suggest several

significant trends in water quality do exist over the course of our study including decreased

dissolved oxygen and pH as well as increased ammonium and water clarity.
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Biographical Sketch

I have always been very curious about my surroundings, searching to understand not only

how things work but why they are the way they are. I love spending time outside, and so that is

where my curiosity was most prominent, motivating my interest in the dynamics of ecosystems,

evolutionary patterns, and ecological relationships between organisms. As I moved through my

academic career, I realized that environmental science was the perfect interdisciplinary program

where I could satisfy my curiosities and further apply what I learn to preserve the threatened

natural world.

I also possessed a strong interest in mathematics, particularly in statistics as this was a

way of understanding and interpreting the world that made a lot of sense to me. After deciding

that I would officially double major between these two disciplines, I began looking for ways to

combine them and discovered Dr. Rothenberger’s lab. Dr. Rothenberger had been collecting data

on the Hudson-Raritan Estuary for over ten years, culminating in a large dataset which was a

perfect opportunity for me to apply my statistical background to an environmental problem.

I joined Dr. Rothenberger’s lab my junior year and began working on my first big project.

We decided to use a method referred to as ecological network analysis to investigate which of the

many variables in the dataset appeared to be related, allowing us to build hypotheses and better

understand the dynamics present in the ecosystem. I was lucky to help turn this into an official

publication and got my first official authorship on a scientific paper.

My senior year I was intent on completing a thesis project and decided to continue

working with this dataset and running statistics. I decided to take another approach to the data

and look for a way to predict harmful algal blooms because they were a major threat to the
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aquatic system we were studying along with many more around the world. As I read through

papers on statistical analyses of harmful algal blooms I stumbled upon random forest modeling.

As I discussed the concept with my mathematics professors, environmental professors, and some

data scientists I realized this was exactly what I was looking for.

As I worked through the project, I learned even more about the challenges of constructing

a proposal, presenting complicated ideas to a general audience, needing to have a full

understanding of the topic (even outside of my specific disciplines), the peer review process, and

more. This process also solidified my desire to continue my education with graduate school and

pursue a research-based career in the future. After Lafayette College, I will be pursuing a PhD in

Statistics at Oregon State University where I will focus on specifically applying statistical

methods to environmental problems.
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Introduction

1.1. Background

The major influence of phytoplankton in aquatic ecosystems have been well documented

since the mid 1900s. Although they are primarily microscopic, phytoplankton are responsible for

roughly half the global net primary productivity (Cloern et al., 2014; Field et al., 1998; Zhu et

al., 2018). Phytoplankton also play a foundational role in aquatic food webs, feeding various

species of fish and zooplankton grazers. Despite their positive effects on the global environment,

dramatic shifts in local phytoplankton assemblages can have substantial negative ecosystem

consequences. Events of rapid, localized phytoplankton growth are one such assemblage change

which frequently have drastic consequences and are referred to as harmful algal blooms (HABs).

HAB effects generally fall into three overlapping categories: 1) ecological consequences

on local flora and fauna, 2) human health and illnesses, and 3) economic. One of the most

common effects of HABs is the development of hypoxic (or in severe cases anoxic) conditions.

Three mechanisms lead to hypoxia: aerobic decomposition, increased turbidity, and increased

respiration. Aerobic decomposition of phytoplankton is performed by bacteria upon death of

phytoplankton cells. As large volumes of phytoplankton die off, bacteria siphon dissolved

oxygen out of the water to break down the cells (Suthers & Rissik, 2009; Yang et al., 2019).

Increased turbidity refers to a decrease in water clarity, in this case resulting from higher

phytoplankton density within the water column. This inhibits sunlight penetration to submersed

aquatic flora, and thereby lowers photosynthetic rates of species including seagrasses which act

as a major source of dissolved oxygen (Suthers & Rissik, 2009). Not only can this lower

photosynthetic rates in existing plants, but cultural eutrophication and algal blooms have been
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linked to seagrass disappearances in coastal waters (Burkholder et al., 2007). Lastly, increased

respiration rates result from the increase in phytoplankton abundance. As with most other

photosynthetic organisms, the absence of sunlight at night prevents photosynthesis from

occurring, and thus cellular respiration is performed. This process demands oxygen which is

derived from the surrounding water.

Hypoxic conditions generated by these mechanisms lead to the differential suffocation of

finfish and shellfish. Observation of the HRE native species striped bass (Morone saxatilis) and

bay anchovy (Anchoa mitchilli) within the Chesapeake Bay ecosystem exhibit relatively low

tolerance to decreases in DO, with LC50 equal to about 2.5 mg/L and 2.8 mg/L respectively (Berg

& Levinton, 1985; Breitburg et al., 2001). Shifts in DO can thus lead to shifts in fish community

structure with cascading implications for non-fish species at other trophic levels.

Another well documented result of HABs is the release of toxins from certain species.

Evolution appears to have selected for toxins for both defensive and offensive functions.

Defensively, secreted chemicals can suppress competitors and defend against predation from

grazers (Driscoll et al., 2016; Legrand et al., 2003). Offensively, these chemicals can act as

venom to immobilize prey (Sheng et al., 2010). That said, the nature of toxin production as an

evolutionary response to other organisms makes these physiologies very challenging to study

using both in-situ and ex-situ methods as they are inherently based on interactions within

complex aquatic communities. HAB events composed of toxin-releasing taxa can beget

accumulation of toxins in the ecosystem. Some of the most common incidents of

phytoplankton-produced toxins along the eastern coast of North America are amnesic shellfish

toxin (AST), ciguatera shellfish toxin (CST), diarrhetic shellfish toxin (DST), neurotoxic
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shellfish toxin (NST), and paralytic shellfish toxin (PST) (Hallegraeff et al., 2021). These toxins

are known to accumulate in finfish and shellfish, causing mass mortality events when

concentrations exceed lethal thresholds (Jin & Hoagland, 2008; M. B. Rothenberger et al., 2014).

Consumption of fish originating from fisheries or aquaculture operations impacted by these

toxins can lead to the ingestion of toxins by the general public. Symptoms range from relatively

benign cases of vomiting and abdominal discomfort to more severe organ failure and respiratory

complications, even leading to death in extreme cases (Pettersson & Pozdni︠ a︡kov, 2013; Sarkar,

2018; Suthers & Rissik, 2009).

Physiological impact of phytoplankton on fish, particularly finfish, are less often

discussed but still important. Several species of plankton possess spine-like anatomical

structures. When these species get lodged in the gills of finfish, they can cause discomfort,

irritation, and abrasions of the gills. Resulting inflammation can increase susceptibility to

infection (Pettersson & Pozdni︠ a︡kov, 2013; Suthers & Rissik, 2009). .

The aforementioned hypoxic/anoxic conditions, toxin accumulation, and physical damage

have pronounced influences on local wildlife. Fish kills are commonplace results of both

situations, and mortality events at one level of the trophic web generally cascade to other sectors,

resulting in widespread degradation of ecosystem services. The collapse of fisheries and tourism

are two ecosystem services with economic importance for many coastal areas threatened by

HABs. In 2005, an algal bloom off the New England coast resulted in losses from the softshell

clam, mussel, quahog fisheries that cost the states of Massachusetts and Maine roughly $15.7

million and $2.5 million respectively (Jin & Hoagland, 2008).
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1.2. HAB Causes and Dynamics

Public pressure to resolve the HAB issues in coastal areas has led to intensified

monitoring and research efforts on the topic. Improvements in algal bloom monitoring

technology and more long-term studies are resulting in accumulations of volumes of data in

databases such as the Harmful Algal Event Database (HAEDAT). These large datasets provide

the ideal opportunity to investigate HAB dynamics with the use of advanced statistical

techniques. Certain statistical techniques, including the random forest model used in this study,

can provide forecasting information, potentially informing ecosystem managers of HAB events

and creating an opportunity for proactive style management instead of the typical reactive style.

Proactive management can aid in the mitigation or prevention of the consequences of HABs.

A majority of the research has focused on abiotic variables such as nutrient loads and

water quality parameters, and weather/climatic influence. Chemicals like P, N, and Si, are known

to be limiting and required in abundance for phytoplankton growth, whereas other nutrients

including Cd, Co, Ni and Zn are also known to be absorbed by phytoplankton but in smaller

amounts (Hecky & Kilham, 1988; Paulsson & Widerlund, 2021; Suthers & Rissik, 2009).

Nitrogen, often as nitrate and ammonium, and phosphorus, often as phosphate, are

particularly important because in addition to being limiting nutrients, they are components of

common pollutants including sewage and fertilizer runoff. This process of anthropogenic nutrient

addition resulting in phytoplankton growth stimulation and ecosystem degradation, or cultural

eutrophication, is one of the most general ways nutrients in a system can influence

phytoplankton assemblages. Other influences can be more species specific, such as decreased
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Si:N ratios tend to shift assemblages away from diatom dominance, and pulses of iron into a

system can result in dinoflagellate dominance (M. B. Rothenberger & Calomeni, 2016).

Weather and climate patterns also play an important role in phytoplankton patterns, as

previously mentioned in regard to projected HAB patterns with the progression of climate

change. Several influential weather patterns relate to nutrient availability, such as precipitation

events often correlating positively to phytoplankton growth due to increased runoff transporting

nutrient rich fertilizers and sewage into aquatic systems. River discharge is similarly correlated

with phytoplankton growth and reproduction for related reasons. The relationship between HABs

and weather/climate and nutrient availability is clearly crucial to understanding the dynamics of

phytoplankton and is well understood and thoroughly researched in algal literature.

Conversely, the information on biotic interactions between species of plankton, fish, and

bacteria is only superficially understood. In a 1961 publication entitled Paradox of the Plankton,

the author motivates the necessity to understand these biotic relationships and puts forth that

HABs cannot be fully understood without them. With a limited amount of nutrients and a vast

collection of phytoplankton species competing for them, principles of competitive exclusion

would predict a far less diverse plankton community than actually observed (Hutchinson, 1961).

Hutchinson continues by proposing the reason such high levels of diversity are achieved relates

to the symbiotic relationships present between species, and thus understanding these

relationships is extremely important in understanding overall HAB dynamics.

The gap in knowledge on biotic relationships is likely a consequence, in part, of the

complexity of phytoplankton communities which can be composed of a sizable set of species.

Previously mentioned advancements in monitoring technologies, techniques, and statistical
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analysis methods have only recently provided an opportunity to truly understand these

communities. Furthermore, relationships among species are not easily generalized between

systems, and so these relationships must be studied on a site-by-site basis (Hallegraeff et al.,

2021).

Despite these challenges, we have some generalizable knowledge on relationships at the

broader taxonomic levels. For instance, zooplankton are known to graze on phytoplankton, a

dynamic which can potentially be utilized for HAB management (Griffin et al., 2001; Reynolds,

2006; Schoenberg & Carlson, 1984). Bacterial relationships to phytoplankton are less well

understood but it is acknowledged that they play an important role in the microbial loop of

aquatic systems (Suthers & Rissik, 2009). Studies suggest important symbiotic relationships

exist and are postulated as being either growth promoting (obligate or facultative) or growth

inhibiting (Seymour et al., 2017).

1.3. Advancements in HAB monitoring

Forecasting ability for HAB activity is informed by the wealth of knowledge already

available on the topic, particularly pertaining to what variables drive or inhibit bloom formation

of local species. Satellite imagery and more precise equipment are two major improvements in

the field, allowing scientists to compile vast quantities of data for analysis. The development of

global databases like HAEDAT is also a major improvement, allowing scientists to conveniently

access data.

Consequently, scientists studying aquatic ecosystems are able to detect fine alterations in

HAB patterns, and some studies suggest HABs have been increasing in both intensity and

E. R. Flint | Departments of Environmental Science and Mathematics, Lafayette College

11

https://www.zotero.org/google-docs/?VHsQd5
https://www.zotero.org/google-docs/?VHsQd5
https://www.zotero.org/google-docs/?SxmNEX
https://www.zotero.org/google-docs/?SxmNEX
https://www.zotero.org/google-docs/?OtnBUZ
https://www.zotero.org/google-docs/?Dq6Fy0


severity (Anderson et al., 2021). The legitimacy of this proposition is uncertain, as Hallegraeff et

al. (2021) point out, since more frequent and reliable monitoring methods could confound these

trends. As monitoring methods improve in accuracy, blooms may be detected which may have

been missed using old methods, and so although blooms would occur with the same frequency

monitoring would detect an increase in bloom activity.

Regardless, studies attempting to forecast shifts in HAB patterns reveal further increases

in HAB frequency and intensity are likely with the progression of climate change. Elevated

oceanic carbon dioxide concentrations, rising sea temperatures, and more frequent upwelling

events are all favorable conditions for certain HAB-forming species (Hallegraeff et al., 2021;

Sarkar, 2018). This further underscores the importance of understanding phytoplankton

community dynamics and developing methods to predict HAB occurrence. Accurate prediction

can allow ecosystem managers to proactively control HAB events and mitigate the potential

harms of the forecasted bloom.

1.4. The Hudson-Raritan Estuary

Broad understanding of phytoplankton and HAB dynamics is crucial foundational

knowledge, but differences in climate, hydrology, and ecology between ecosystems necessitates

a site-by-site analysis for understanding a particular system (Hallegraeff et al., 2021). This study

focuses on the Hudson-Raritan Estuary (HRE), a brackish water system located between the

states of New York and New Jersey, directly south of New York City. Before development, the

HRE was an important recreational fishery, supporting local finfish, shellfish, and waterfowl

(Kane & Kerlinger, 1994). In the past decade and a half, declines in the fisheries have been
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observed, possibly a combined effect of HABs, pollution, and overfishing. Collapse of the

eastern oyster (Crassostrea virginica) fishery is a clear example of this as the species is currently

considered ecologically extinct in the HRE (Jeffries, 1962). Other evidence of ecosystem decline

is the fall of commercial catch of American shad as well as the deterioration of the sturgeon

fishery by the early 1900s (Berg & Levinton, 1985).

Proximity to the city has led to intense coastal development and changes in hydrology

which, in conjunction with pollution from river outflow, created eutrophic conditions since at

least the 1960s (Jeffries, 1962; Rothenberger et al., 2018). The 1962 study by Jeffries was a

baseline for comparison for the data collected by our lab. Findings suggest 2014 SRP

concentrations were up to 20 times higher than in 1962 at some sample locations and nitrate

concentrations are up to 50 times higher, causing the HRE to continue exhibiting cultural

eutrophication symptoms like frequent algal blooms and seasonally low dissolved oxygen levels

(Jeffries, 1962; Rothenberger et al., 2014). High concentrations of other pollutants including

PCBs, heavy metals, and pesticides have also been detected in the system (Breteler, 1984).

The HRE has been studied by our lab since 2010, representing the longest known modern

study of water quality and plankton relationships in the ecosystem. The most recent publication

is an analysis of all collected data using ecological network analysis to reveal correlations

between species abundances, weather factors, and nutrient loads with a primary goal of filling

the knowledge gap on biotic relationships in plankton assemblages (Rothenberger et al., 2023).

Ecological network analysis was able to uncover correlations between variables existing at a

given temporal sample. These correlations have potential to generate hypotheses, specifically

about the existence and importance of symbiotic relationships between species. We found about
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95% of the revealed correlations were biotic, supporting the hypothesis that biotic drivers are

likely very important in this system (Rothenberger et al., 2023). This prior study motivates the

current one, where our new analysis objectives focus on digging deeper into causal relationships

of HABs of a particular species. The highly interconnected nature of phytoplankton communities

revealed within the HRE supports the need for modern statistical analysis methods to investigate

relationships and HABs within the system. Our first objective of constructing a predictive model

directly addresses this, and the second objective of overall water quality analysis plays a

supplementary role in understanding changes in the estuary which may in turn influence

phytoplankton communities.

Several phytoplankton taxa have been recorded as forming HABs in the HRE including

Ceratium tripos, Prorocentrum micans, Heterocapsa rotundata, and Heterosigma akashiwo

(Rothenberger et al., 2023). Over the course of our sampling, the species H. akashiwo has

bloomed most frequently and for this reason was chosen as the focus of this study (Rothenberger

et al., 2023). H akashiwo is a raphidophyte known to release brevetoxin in other ecosystems with

effects on fish including paralysis and mortality; however, to our knowledge, brevetoxin has not

been recorded in the HRE. (Graham & Wilcox, 2000; Khan et al., 1997). Ingestion of brevetoxin

by humans is known to cause reversed hot and cold sensations, vertigo, vomiting, tingling

sensations, and abdominal pain (CDC | Case Definition, 2019). The most common vector of

exposure is through consumption of contaminated shellfish with brevetoxin bioaccumulation.

Such impacts of H. akashiwo blooms necessitate a better understanding of bloom events which

can be accomplished by more advanced statistical methods.
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Methods

2.1. Sampling

Field sampling in the HRE occurred by boat between 2010 and 2022 with samples

collected at monthly intervals between April and November (weather prohibited sample

collection in other months) between 1000 and 1200 hours. Six sites were chosen for sampling

(Figure 1a) in the estuary. Selection of these sites was to compare modern results to those of

Jeffries from half a century earlier. Reasoning for the selection of these sites in the 1960s was

motivated by circulation patterns pervasive in the estuary which modern studies confirm persist

(Figure 1b) (Jeffries, 1962).

At each sample location, water samples were collected at three depths referred to as

surface (0.5 m depth), middle (1.5 m depth), and lower (3.0 m depth) with a thoroughly rinsed

2.2 L Van Dorn water sampler. Water was then transferred into acid cleaned bottles for analysis

with SRP being first filtered through a sterile 0.45 µm syringe filter. SRP, nitrate, and ammonium

were collected at all three depths while ferrous Fe and silica were only collected at the surface.

Water temperature, pH, dissolved oxygen concentration, and conductivity were measured at each

depth (surface, middle, and lower) with a YSI 6820 V2 multiparameter meter calibrated before

each sample session. Water clarity was estimated using a Secchi disk, a black and white disk

which is lowered into the water column to measure turbidity. The depth at which the disk

disappears is the measurement recorded. A 12-1 Schindler-Patalas trap was used on the surface

to collect a zooplankton sample. Phytoplankton was collected from the surface Van Dorn sample

and preserved with acidic Lugol’s solution in amber bottles to prevent shock which can

complicate visual identification. All plankton were held at 4°C until analysis.
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Nutrient analysis in the laboratory was performed according to standard methods (Rice et

al., 2012). A HACH DR/2500 spectrophotometer was used for analysis, calibrating with

standards before each session and blanks between samples. Nitrate and ferrous Fe were

performed within 24 hours after collection and SRP, silica, and ammonium were performed

within 48 hours. If sample analysis was not possible within the timeframe, samples were frozen

and thawed when able to be analyzed. Plankton analysis was performed by cell counts under

microscopy identified to the lowest taxonomic levels and recorded as density. Weather data were

acquired from New Jersey Weather and Climate (weekly precipitation), Rutgers Office of the

New Jersey State Climatologist (monthly precipitation), and the USGS (river discharge). All

directly observed variables (nutrients, plankton abundances, weather, etc) were included and

variables observed at multiple depths were included as separate variables (i.e. [NO3
-] at surface,

[NO3
-] at middle, and [NO3

-] at lower). All data were recorded in a collection of spreadsheets for

future analysis.

2.2. Data Organization and Software

Data analysis was performed in RStudio with the packages ranger for the analysis

described later and missForest for imputing missing values and all aforementioned variables

were included in statistical analysis. The dataset was then structured to achieve one of the

primary objectives of the study, predicting algal blooms of H. akashiwo. To accomplish this, data

were reorganized in a way that associated one month’s H. akashiwo abundance with previous

month’s variables.
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The lag period was chosen to be 2 months to balance our chances of capturing important

variables with the loss of samples early in the year. Yajima and Derot (2018) ran random forest

analysis on chlorophyll-a concentrations as a proxy for algal abundance and tested lag times of 1,

2, and 3 months. They determined a 2 month lag to perform best, however results were similar

between the groups. Because two months of prior data are needed to build the model,

observations of H. akashiwo within the first 2 months of our sample season cannot be predicted

(e.g. April could not be predicted because we did not have data on February and March to lag).

From a management perspective, an effective model requiring minimal data collection is also

optimal.

Missing data were present within the dataframe for a variety of reasons (suspended

sampling, equipment malfunction, etc.). For the random forest model, imputation was performed

with the package missForest in RStudio for any observations with minimal missing data. For the

time series analysis of overall trends, missing data were ignored. Any full month without data

collection was fully ignored.

2.3. Random Forest Modeling

The primary method of statistical analysis for this study was construction of a

classification random forest (RF) model. RFs are an ensemble method, combining many

individual decision trees built from a training dataset to predict an unknown variable (Breiman,

2001). Decision trees segment variables in the predictor space and group response values based𝑝

on that split. The ideal split is chosen at each node, where ideal splits are those which group

observations into most similar groups, and splitting continues until each group has some small
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number of observations filtered into it, called a terminal node. An overfitting issue, pervasive in

decision trees, can be addressed by introducing bagging, referring to the combination of

bootstrapping the training data to construct multiple trees based on a random subset of 𝑝' = 2
3 𝑝

predictors, and aggregating, averaging the responses of individual trees to calculate the overall𝐵

response of the forest given by

𝑟𝑓(𝑥) = 1
𝐵

𝑏=1

𝐵

∑ 𝑓𝑏(𝑥)

where is the response of the forest and is the response of a single tree. Further, at𝑟𝑓(𝑥) 𝑓𝑏(𝑥)

each split variables are randomly selected from the total set and evaluated for the best𝑚 ≈ 𝑝'

possible split. The following spit will then evaluate another variables randomly chosen and𝑚

this proceeds until terminal nodes of the specified size are achieved. This process serves to

decorrelate trees from one another, addressing the overfitting issue observed in single decision

trees.

This paper uses a classification RF model which yields a categorical response variable

(opposed to a regression RF model which yields a continuous response). Although a regression

RF model was initially tried, the classification method was chosen due to the nature of the

response variable which, although recorded as a continuous variable in cells per mL, exhibited a

highly skewed distribution. Other studies on similar datasets have also chosen to use the

classification method due to its outperformance of the regression style (Derot et al., 2020; Harley

et al., 2020). Use of a regression style forest generally led to very poor predictive ability with

extremely high error rates. Classification of H. akashiwo abundance was done by quartile ranges
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where values below the 90th percentile were considered “low” abundance, and those above were

considered “high”. For our dataset, this amounts to the cutoff level being 852 cells/mL. Figure 2

shows a time series plot of H. akashiwo over the period of study which was used to decide the

cutoff ranges.

Evaluation of the model was investigated by out-of-bag error (OOB) and a confusion

matrix. OOB error works by testing each tree with data not used in its creation, made possible by

the bootstrapping process which subsets the data. Thus some observations are unused in the

construction of a given tree and we can calculate the error for that tree as whether or not it makes

an accurate prediction. Because this is a classification forest, the Gini index was used as a(𝐺)

measure of error within the trees. This can be thought of as a measure of node purity. Recall that

RFs split up observations by categorizing them into like groups based on trends in predictor

variables. However, that terminal node usually groups together some number of observations

greater than 1, and so the most common response of the observations in that group is declared the

response of that terminal node. This method is also referred to as “majority vote”. When the

responses of the observations in the terminal node are more homogeneous, the node is deemed

more pure. Then, if we let be the proportion of observations from the dominant class in the𝑔
𝑘

terminal node,𝑘𝑡ℎ

𝐺 =
𝑘=1

𝐾

∑ 𝑔
𝑘
(1 − 𝑔

𝑘
)

This equation implies as terminal nodes become more homogeneous, is closer to 1. Thus𝑔
𝑘

𝐺

approaches 0 representing better forest classification. mth
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The confusion matrix displays the true category of an observation and the category

predicted by the forest for that observation. Similar to the OOB error, this method evaluates by

running each observation only through trees created without that observation. This gives an idea

of how well the model is classifying observations of specific types as true positive , true(𝑇𝑃)

negatives , false positives , and false negatives . The two metrics calculated from(𝑇𝑁) (𝐹𝑃) (𝐹𝑁)

this table are accuracy

Accuracy = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

and precision

Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃

Lastly, variable importance was calculated as a means for interpreting the RF. Variable

importance within a tree was ranked by reduction of the Gini index at each split. For a given

predictor, the Gini index is calculated both before and after every split in every tree which uses

that variable. The reduction in split is then averaged across trees, and variables which show a

greater average reduction of the Gini index are deemed to be more important, as they do a better

job at homogenizing the terminal nodes of the RF.

Although variable importance gives a general idea of what variables are more crucial in

creating accurate predictions within the forest, the nature of the relationships between variables

is obscured. It cannot be easily determined what role each variable plays within each tree where

it is used as a predictor. The number of trees within the forest also obscures these relationships,

as they may exhibit slight variations based on what variance is previously accounted for by other
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variables within a single tree. This is a major drawback of this method, but the obscurity is the

cost for improved accuracy of the model with real-world data.

2.4. Time Series Analysis

Summary statistics were performed to investigate overarching trends in several important

water quality parameters of the HRE. Overall trends were analyzed using data from the

2010-2020 time period due to frequent sampling disruptions from 2020-2022 (a consequence of

COVID-19). Analysis of the long-term trends throughout the 10 year study period were

performed as well as analysis for fluctuation of parameters by season.

Long-term trends were analyzed using Seasonal Mann-Kendall from the rkt package in

RStudio. This is a nonparametric approach to identify monotonic trends in the data over the time

series for which the null hypothesis is randomness while the alternative is the existence of a

monotonic trend. Selection of this test was based on the nonparametric nature of the test, as well

as its ability to cope with missing values and frequent use in environmental time series literature

(Hirsch et al., 1982). Seasonal Mann-Kendall identifies a monotonic trend throughout a whole

time series by first comparing annually recurring observations, , for each𝑛 {𝑥
1
,  𝑥

2
,  ⋯,  𝑥

𝑛
}

season individually (i.e. the trend in April is calculated then separately the trend in May is

calculated and so on for each season of the time series). For each season, we can calculate the

trend as(𝑆)

where
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Effectively, this test gives a +1 ranking when one observation is higher than the previous, a -1

ranking when a season is lower than the previous, and 0 when equal, such that the overall test

statistic gives an idea of how strong the trend in data for a particular season is over time.

Once the trends for individual seasons are calculated, they can be aggregated across 𝑚

seasons in the time series by

The statistics now gives an evaluation of the trend throughout the entire time series. This in𝑆'

turn allows for the calculation of the test statistic Kendall’s Tau by(− 1 ≤ τ ≤ 1)

This effectively serves to evaluate trends over time and remove seasonality influence. However,

if there are more complicated time series trends (i.e. an increase in some months coupled with a

decrease in others), this method may miss those trends.

Theil-Sen’s slope was also estimated with the rkt RStudio package to quantify the

estimated change over the course of the study. This method calculates the slope for each season

by ordinary least squares regression and takes the median. Similarly, the intercept for the

Theil-Sen’s slope is calculated as the median of the OLS regression intercepts. Use of this

method is commonly used in conjunction with general Mann-Kendall methods due to its ability
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to handle nonparametric data and resistance to outliers (Meals et al., 2011). Both Seasonal

Mann-Kendall and Theil-Sen’s slope were calculated for dissolved oxygen, pH, salinity,

ammonium, nitrate, SRP, N:P ratio, Si:N ratio, and Secchi depth. Data was aggregated between

sites and separated by depth, following procedure from (Burkholder et al., 2006).
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Results

3.1. Random Forest Tuning

The different model parameters were evaluated to determine the most effective model. It

was found 500 trees were sufficient as error reduction leveled off around 300 (Figure 3) trees for

all parameter combinations. Using a 500 tree forest, iterations were done to minimize OOB error

by evaluating different combinations of three main variables: size of the bootstrapped sample as

a percent of the total observations , variables tried at each split , and minimum node size(𝑝
𝑠
) (𝑝

𝑡
)

. Since general guidelines of values are provided for each of these, only slight variations on(𝑝
𝑛
)

each were evaluated for reduction of OOB error (Table 1).

In addition to the standard parameters, a weighting factor was considered. Classification

of H. akashiwo abundance into the two categories resulted in a distribution of 44 observations in

the “high” abundance classification and the remaining 235 observations as “low”. Early

iterations of the model found decent predictive ability (around 15% error rate), however

evaluation of the confusion matrix found extremely low accuracy and precision for high density

events. This was likely due to systematic general classification of observations as low, yielding

many correct responses for low observations but most of the few high observations were

misclassified as low.

To address this, various weightings were tested (Table 2) to determine the optimal weight

to place on correctly predicting higher algal density events. Effectively, adding a weight

parameter tells the model that it is more important to correctly identify observations of “high”

algal density. Although this typically improves the precision of the RF model for predicting high
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density events, this may come at the cost of a loss in precision for low density events or overall

prediction error. Costs and benefits of the weighting parameter can be seen in Figure 4.

Prediction error and accuracy of the RF model appeared to be optimal in the 3-7 weighting

range. As expected, precision of “high” predictions appeared to continually increase and

precision of “low” predictions continually decreased, although improvement in “high” precision

was far greater than the loss of precision for “low” predictions.

A weight of 6 was ultimately decided for the “high” classification, as “high”

classification precision appeared to level out at this point and both accuracy and error were

optimal. Further, the deterioration in “low” precision was able to be mitigated more than if a

weight of 7-10 was used. Using this weight, the final RF model was developed and optimal

parameters were determined from Table 1 to be , , and by𝑝
𝑡

= 21 𝑝
𝑛

= 9 𝑝
𝑠

= 0. 65

permutation of all combinations and choosing that with the lowest OOB prediction error

(11.83%). This RF model yielded the confusion matrix presented in Table 3. Accuracy was

calculated as 88.17%. Precision for “high” and “low” counts were calculated as 63.64% and

92.77% respectively.

3.2. Variable Importance

The variable importance plot for the final RF model is shown in Figure 5, where it

should be noted that only the top 25 of the +350 variables tested were included in the plot.

Important results from Figure 5 are the distribution of variable type (biotic, chemical, or weather

parameter) and the actual variables present.
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Weather variables of both lag times appeared to be highly important in predicting a H.

akashiwo HAB event. Precipitation, measured as total monthly and weekly rainfall, and mean

discharge of the Raritan River were all present in the top 25 important variables. Water

geochemical parameters are also common throughout the plot. Dissolved oxygen for several

depths from both lag times appears to play an important predictive role in the model. The only

nutrient to appear in the figure is ferrous iron for which the surface measurements at lag one and

the middle measurements at lag two were deemed important. Nitrate, ammonium, and SRP did

not appear in the top 25 important variables at any depth or lag time. Lastly, several biotic

variables appear to be important in the RF model. The biotic variables which appeared were

Heterocapsa rotundata abundance at lag two, Chlamydomonas spp. abundance for both lag one

and two, cyanobacteria abundance at lag one, Leptocylindrus minimus at lag one, and Copepod

nauplii at lag two.

The overall pattern of the plot also tells us that most variables within the top 25 are

similar in importance. Besides the top 5, the change in importance between any two adjacent

variables is minimal, and considering error it would be difficult to legitimately assert that one is

definitely more important than the next. Within the top 5 however, there is a clear structure to the

importance of these variables to the RF model’s predictive ability.

3.3. Long-term Trends

Performing the Seasonal Mann-Kendall test and calculation of the Theil-Sen’s slope are

summarized in Table 4. Four out of the nine variables showed significance (determined by
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) for at least one depth with non-zero Theil-Sen’s slope estimations. Of the variablesα = 0. 05

that showed significance for at least one depth, all three depths were found significant.

The time series plots for the four variables of significance are illustrated along with their

Theil-Sen’s derived trendlines in Figure 6. Dissolved oxygen surface and middle depths showed

the strongest significance, as well as the Theil-Sen’s slope of the greatest magnitude. pH showed

slight significance at all three depths, also with negative slopes of comparable values between

-0.05 and -0.07. Ammonium showed strong significance at surface and middle depths with

moderate significance at the deep sample depth. A positive slope was found to be between 10

and 20 g/L change per year for all depths. Finally, Secchi depth showed strong significanceµ

with a slight positive slope of 0.12 m per year.

As seen in Figure 6.c, apparent outliers for ammonium concentration occur between

2019 and 2020. Analysis with Seasonal Mann-Kendall and Theil-Sen’s slope were both

performed with the outliers removed (2010-2019) for the ammonium data, however it should be

clarified that official analysis of ammonium data includes the outliers because we could not find

any reason to officially exclude them. However, the outliers are so drastic that it is worth analysis

of trends without them. For the surface, middle, and deep depths respectively a rerun found

Kendall’s Taus = 0.369, 0.336, and 0.170, p-values = 0.0003, 0.0009, and 0.0972, and

Theil-Sen’s Slopes = 13.33, 13.08, and 7.13. Kendall’s Taus are slightly lower without the

outliers, but still suggest a positive trend in ammonium concentration. Slopes without outliers are

within 5 units below the slopes with outliers included, suggesting the positive trend in

ammonium may be of a slightly smaller magnitude. Interestingly, while p-values for surface and
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middle depths continue to show very strong significance, the deep depth fails to show

significance at .α = 0. 05

Time series analysis was also run for H. akashiwo abundance over the course of our study

(Figure 2). Two obvious periods of high abundance occur in the summers of 2012 and 2013, and

a smaller peak appears in the summer of 2017. A box plot showing season-to-season differences

in H. akashiwo abundance (Figure 7.) emphasizes the seasonality of species abundance. Algal

density of H. akashiwo systematically begins low in the early spring, and begins to increase into

the warmer months. After peaking around June or July, abundance begins to decrease again to

early spring levels before sampling is suspended for the winter months. The summer months also

display more variability compared to the months early and late in the sampling season.
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Discussion

4.1. Implementation of the Model

The RF model developed in this paper, while far from perfect, does a good job predicting

the observations with which it is unfamiliar, exemplified by the relatively low out-of-bag error.

Other publications which attempted to establish RF models for HABs with various

methodologies have had mixed success. Derot et al. (2020) performed a classification RF model

and had an out-of-bag classification error (a measure of incorrect prediction frequency) of about

2% while the classification RF constructed by Harley et al. (2020) to predict paralytic shellfish

toxin only showed an error rate of closer to 20%.

The weighting factor for “high” abundance observations (above the 90th percentile)

evaluated in addition to the permutation of parameters allowed the model to be tuned for optimal

performance. The expectation was for prediction error and accuracy to both exhibit deterioration

as weighting for “high” classification was increased. It was reasoned that under the unweighted

condition, the forest would perform optimally overall creating the forest with the lowest error.

The addition of the weight parameter would then improve precision for “high” classification at

the expense of “low” classification error which would eclipse the improvements from “high”

precision. Although this was observed, the loss in precision for “low” classification was initially

so minimal compared to the great improvement in precision for “high” classification, that error

and accuracy showed initial improvements before deteriorating.

We expect that this can be explained by the low fraction of “high” observations in the

dataset (44 of 279). Since “high” observations are so infrequent, they are often missed in the
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random sampling involved in the bootstrapping step of the forest. The weighting factor

overcomes this challenge such that the final model is able to predict both classes well. We

recommend that future RF models established for HAB datasets incorporate this parameter as

this leads to an overall better model.

Based on the relatively low error rate, this model has potential for application in the HRE

ecosystem. Although monitoring of the HRE has concluded for our lab, several governmental

and nonprofit organizations manage the HRE and could potentially utilize this model as a tool for

prediction of H. akashiwo HAB activity. The US Army Corps of Engineers and the New

York/New Jersey Port Authority outlined a restoration plan in 2020, one of the goals being to

restore the eastern oyster populations in the estuary with roughly $3 million set aside for

continued monitoring of the ecosystem (Hudson-Raritan Estuary Ecosystem Restoration

Feasibility Study, 2020). The depletion of these oyster beds is a major concern, however

reintroduction of the species will likely fail so long as H. akashiwo blooms fail to be controlled.

The eastern oyster tends to exhibit elevated lysosomal destabilization rates, a metric of cellular

damage, in response to H. akashiwo both in field and laboratory settings (Keppler et al., 2005).

Thus, the ability to predict and manage blooms is both feasible and important, as money is being

allotted for HRE monitoring and restoration projects are dependent on HAB control.

Additionally, nonprofits like the Harbor and Estuary Program, part of the Hudson River

Foundation, are working to restore the overall ecosystem and improve the recreational and

economic value (Hudson River Foundation, 2022). Implementation of this predictive model can

help inform tourists when visitation is likely to be disrupted by an algal bloom, hopefully

increasing tourism as recreational activities can be better scheduled.
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Another important implication of the model could be for human protection from shellfish

contamination. Although our monitoring has not observed brevetoxin within the HRE, we have

not been testing for it and so it potentially is present. By implementing this model, at time when

a bloom of H. akashiwo is soon predicted, inspection of fishery yield can be enhanced to assure

contamination does not occur,

Lasty, it should be restated that this model can be used exclusively to predict HABs of H.

akashiwo. In theory, similar models could be developed for other species known to form HABs

on this system, and it may be beneficial to develop models for other species identified on the

HAEDAT. Additionally, although HABs can be monospecific, they can also be composed of

several species. HABs of this nature will not be effectively predicted by the model developed in

this paper and better identified using chlorophyll-a measurements which are not a component of

our dataset.

4.2. Predictor Relationships

The variable importance plot provides insight into which variables are best used to

predict the abundance of H. akashiwo blooms in the near future. The six weather variables

included in the dataset (prior month total precipitation, prior week mean precipitation, and prior

week mean discharge) are highly important for predicting bloom activity. Precipitation will

generally lead to an increase in discharge, and discharge is recognized as a highly influential

factor in estuarine systems because of the transport of nutrients from upstream (Zhu et al., 2018).

Nutrients like nitrogen, phosphorus, and ammonium can be transported from wastewater and
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fertilizer runoff from upstream areas and deposited within the estuary, stimulating the growth of

specific species.

Interestingly, nitrogen and phosphorous variables did not appear in the top 25 important

variables in Figure 5. These nutrients are widely recognized as limiting plankton growth and

stimulate algal blooms when deposited in large quantities. It is possible that our lag times were

ineffective at capturing the influence of these variables on phytoplankton populations. Although

it depends on the sample site, Rantajärvi et al. (1998) examined temporal sampling distribution

and concluded that intervals as short as weekly would be needed to accurately capture

phytoplankton dynamics in their study system. Because of the distance of our study site and the

lack of a remote monitoring setup, this was not feasible for this study and monthly data was

collected instead. The monthly sampling style and absence of data over wintering months made a

two month lag optimal for our model. Also, it is possible that the influences of discharge and

precipitation already accounted for variation which would have been explained by these

nutrients. As mentioned, precipitation and discharge generally stimulate algal blooms by creating

an influx of nutrients. However, correlations between weather variables (discharge and

precipitation) and nutrients (ammonium, nitrate, iron, SRP, and silicon) do not seem to be

supported by our data and so this explanation is not supported.

Another possibility is that these nutrients are not limiting for H. akashiwo and thus would

play a relatively insignificant role in predicting H. akashiwo blooms. In eutrophic systems like

the HRE, nitrogen and phosphorus are generally very available, and this may lead to other

nutrients becoming limiting. The roles of nitrogen in amino acids, nucleotides, and chlorophyll

as well as the role of phosphorus in ATP, DNA, and phospholipids are extensively documented
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and recognized (Graham & Wilcox, 2000). The concept of iron as being a limiting nutrient in

eutrophic systems has received comparatively little attention. Iron plays a critical role in

photosynthesis and the construction of enzymes which facilitate the uptake of nitrate (Graham &

Wilcox, 2000; Shaked & Lis, 2012). Evidence of iron as a limiting nutrient has also been

observed in many field studies which use this to explain a phenomena of high nitrogen and

phosphorus loads but relatively low phytoplankton loads (Behrenfeld et al., 1996; Hutchins et al.,

1998). Yamochi et al. (1983) identify pulses of iron into the Osaka Bay of Japan as a driver of H.

akashiwo bloom formation. Our findings of ferrous iron as one of the most important predictors

in the RF model corroborate these results and emphasize the importance of considering ferrous

iron as an important algal bloom driver in eutrophic ecosystems.

Also important to note is the dramatic spikes in H. akashiwo abundance in 2012 and 2013

were immediately preceded by intense hurricane events. Hurricane Irene (August 2011) and

Hurricane Sandy (October 2012) both led to dramatic increases in discharge and precipitation.

The peak of the 2011 bloom was more than six times the base level for that season, and the spike

in 2012 was more than double the base level. Rothenberger et al. (2018) studied the influence of

Hurricane Sandy on the HRE and observed a dramatic shift in both plankton assemblages and

nutrient loads. Cumulatively, these results and the importance of precipitation and river discharge

in the RF model suggest H. akashiwo bloom events are likely after future major storm events,

which is a concerning discovery considering the expected increase in severe storms with climate

change (Diffenbaugh et al., 2013; Horton et al., 2015).

Dissolved oxygen appears at several depths and lag times as an important predictor for H.

akashiwo abundance. Normally, dissolved oxygen is associated with HABs as a result, as
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elaborated in the introduction. However the presence as a predictor suggests dissolved oxygen

concentrations at certain levels can be a precursor to HABs. Unfortunately, the model fails to

elaborate on how dissolved oxygen works as a categorizer (whether high or low concentrations

are predictive of high H. akashiwo abundance). There is scarce literature on the use of dissolved

oxygen levels to predict algal bloom activity as most research focuses on the reverse, using algal

bloom activity to predict dissolved oxygen.

While the abiotic factors thus far discussed have reasonably well understood causal

relationships to phytoplankton, the symbiotic relationships are less well understood. The first

thing to note is that this analysis is correlative, and as such there is potential for both H.

akashiwo and the identified predictor species to both be responding to some other stimuli with

differing lag times. Further, autocorrelation was intentionally unadjusted for in the RF model.

Often, models examining correlation between variables in an environmental time series will

adjust for autocorrelation as a way of reducing the identification of correlations which may only

appear due to trends in seasonality. This increases the likelihood that correlations identified

would have potentially meaningful relationships. However, autocorrelation was not adjusted for

in the RF model. We reasoned that seasonal correlations between variables had the potential for

improving prediction accuracy. This has the potential to add another layer of obscurity to the

interpretation of variable importance, however this was a sacrifice made for the sake of model

accuracy. Regardless, the biotic variables listed as important predictors are worth investigating.

The two most important biotic variables according to Figure 5 are Chlamydomonas spp.

and Heterocapsa rotundata. The ecological network analysis publication by Rothenberger et al.

(2023) also found a strong, significant, positive correlation between Chlamydomonas spp. and H.
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akashiwo when analyzing the network produced at site 6. Also, Chlamydomonas spp. was

identified as a predictor for both Lag 1 and Lag 2. Chlamydomonas spp. is a genus of green algae

which has been present in the HRE throughout the sampling period. Although the exact

relationship between Chlamydomonas spp. and H. akashiwo is unknown due to a lack of

literature, both species possess a specialized physiology which enables nitrate reductase to

convert nitric oxide into nitrate; Chlamydomonas spp. further appears to use nitrate reductase to

produce nitric oxide in other conditions (Healey et al., 2023). The former mechanism suggests

both species may do well in environments where nitric oxide is more available than other forms

of nitrogen while the latter suggests Chlamydomonas spp. may play some commensal role by

producing nitric acid for H. akashiwo. Either of these mechanisms would support a positive

relationship between the two taxa, but further experimental research is required to support this.

The relationship between H. rotundata and H. akashiwo was not reflected in the

ecological network analysis, however a relationship between these variables may still exist. Both

species are known HAB producers in the HRE so it is possible that they may both respond to

similar bloom-initiating stimuli with different lag times, or that there is a competition aspect

between them where H. rotundata uses the resources before H. akashiwo, and they exhibit a

negative correlation. Lemley et al. (2018) studied both species and their HAB activity in the

Sundays Estuary of South Africa and observed H. rotundata was most abundant in winter

months but would be suppressed in the presence of H. akashiwo, likely due to photosynthetic

efficiency and nutrient uptake competitive advantages. Due to the nature of the model, we cannot

tell if the nature of the predictive relationship between the variables, however it warrants further

investigation in future studies.
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4.3. Water Quality of the HRE

Summary of a few key water quality parameters was performed in this study in an

attempt to get a general idea of how the HRE has changed over our long-term study. It is clear

that the system continues to experience environmental degradation. The decrease in dissolved

oxygen is particularly concerning as fish species require certain threshold levels to maintain

healthy populations. The standard general for estuarine dissolved oxygen is 4 mg/L as set by the

New Jersey Department of Environmental Protection (Dissolved Oxygen in Coastal Waters,

2021). Although the mid-summer seasonal lows in dissolved oxygen within our dataset have not

yet been observed to violate this standard, it is clear that continuation of current trends will soon

lead to regular summer violations.

Two mechanisms are likely candidates for explaining this trend. First, the increasing

frequency and intensity of algal bloom activity, as suggested by Anderson et al. (2021), may be

transpiring within the HRE, although we lack additional data to support this. Another likely

explanation is rising global temperatures which increase water temperature and thereby reduce

the solubility of oxygen in water. However, trends in water temperature over the course of the

study failed to show significance (p-value > 0.3 for all depths).

Reduction in pH also was observed, consistent with ocean acidification as a result of

climate change. Acidification may have different influences between phytoplankton taxa,

however H. akashiwo has shown greater success in natural waters with higher concentrations of

CO2 (Fu et al., 2008). Microcosm research based on the HRE provides further evidence of H.
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akashiwo success in acidified waters (Gleich, 2017). Other experiments similarly have found

decreasing pH stimulates the growth of H. akashiwo and proposes this may be related to nutrient

availability, particularly of ferrous iron (Matheson, 2014). In systems where ferric iron may

accumulate, ocean acidification will begin to reduce ferric iron to ferrous, becoming readily

available for species like H. akashiwo which utilize the nutrient. The acidification trends

observed resulting from climate change throughout the HRE may be playing a role in the

frequent HAB formation of the species. Cumulatively this is a concerning dynamic of climate

change that may worsen HAB issues on a global scale.

The significant change in ammonium observed also causes concern for the health of the

HRE. Nitrogen is widely recognized as a limiting nutrient for phytoplankton growth, and influx

of nutrients like ammonium into aquatic ecosystems are often responsible for eutrophication and

destabilization of phytoplankton assemblages, often resulting in algal blooms (Hecky & Kilham,

1988; Livingston, 2001). However the relationship of ammonium with algal blooms can be

complicated, as phytoplankton abundances can be stimulated in low-nitrate systems or

conversely suppressed in systems where nitrate is high (Glibert et al., 2016). The influx of

ammonium into the HRE is likely an aggregate of several sources including mineralization of

organic nitrogen by microorganisms, reduction of nitrate through dissimilatory nitrate reduction,

fertilizer/manure runoff, and sewage/wastewater (Covatti & Grischek, 2021). It seems unlikely

that natural biotic, geologic and hydrologic processes would explain the strong significance and

rate of change detected in the ammonium trend analysis, and as such it reasons that

anthropogenic drivers may be responsible. Several wastewater treatment facilities in New York

and New Jersey have been identified as polluters of the HRE in past studies and could explain
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some of the change (M. B. Rothenberger et al., 2014). Regardless of the true explanation for the

trend, the influx of nitrogen is likely to continue stimulating algal blooms in the near future.

The change in Secchi depth reflects an increase in water clarity, generally atypical for

systems experiencing eutrophication where a general symptom of eutrophication is decreased

light availability (Livingston, 2001). According to the Theil-Sen’s slope, the magnitude is about

0.12m per year. This is very minimal and generally Secchi depth for the HRE is small compared

to other estuaries, a symptom of its eutrophic condition. The depths exhibited by the HRE are

notably consistent with those of the Chesapeake Bay which is generally considered a eutrophic

system in poor health. Chesapeake Bay Secchi depths are regularly less than 2 meters according

to an analysis of a dataset with observations from 1960-2015 (Harding et al., 2019). This

compared with more pristine estuaries like Kachimak Bay in Alaska where the lowest Secchi

depth values were between 2-4 meters and were as great as 11 meters in some areas (Hartwell et

al., 2009).

Additionally, the increasing trend of water clarity in the HRE determined by a linear

model may fail to represent the whole story. Clarity seems to be consistent between 2010-2014,

but then experiences a major increase from 2014-2016, followed by a gradual return to normal

levels. The reason for this fluctuation is unknown at this time.

4.4. Broader Applications

As Hallegraff et al. (2021) point out, the diverse array of aquatic ecosystems make

application of knowledge in one difficult to apply directly to another, and therefore site-by-site

analysis is necessary for each ecosystem. Our long-term study on the HRE is the only known
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long-term monitoring performed on this ecosystem in the past several decades. Application of

the RF model developed in this paper has potential for management as mentioned earlier in the

discussion, but only for H. akashiwo in the HRE.

However, the RF methodology used in this paper appears to be effective based on built-in

evaluation methods, even with monthly sampling. This method can be applied to many other

systems which are more closely monitored. RF models provide an advantage over more standard

correlative techniques in their predictive ability and their capability to impose conditional

variables on relationships. For example, while correlation can determine the relationship between

X and Y, the random forest can find a more hidden relationship between X and Y when Z

possesses a certain condition. The consequence of this is the nature of the relationships are

highly obscured and not easily interpreted from a biological perspective. Further, the predictive

style model allows users to forecast future values, opposed to inference style models which are

more concerned with unearthing the relationships between variables which would be highly

challenging with our complex observational dataset. However the evaluation of important

variables in the predictive model serves as a hypothesis generation tool for future experimental

research.

Finally, we especially recommend the use of weighted observations as a method of

improving accuracy and precision while decreasing error, especially for datasets with lower

“high” to “low” abundance observation ratios. This method has not been observed in other RF

HAB models. Additionally, evaluation of different parameters by permutation of all

combinations is highly recommended since the typical values for RF parameters are not always

optimal for the dataset, as was the case for our study. Utilization of these methods for datasets in
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other systems and evaluating blooms of other species have potential to yield even more

information on the complex nature of algal blooms and phytoplankton communities.
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Appendix I: Figures

Figure 1.Map of the Hudson-Raritan Estuary with sampling locations. Figure borrowed
from (M. B. Rothenberger & Calomeni, 2016).
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Figure 2. Heterosigma akashiwo abundance 2010-2020. For consecutive monthly
samples, data points are connected, gaps indicate absent data for at least one month of sample.
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Figure 3. Average OOB prediction error for all variable combinations vs number
of trees used in random forest construction.
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Figure 4. Plots showing the costs and benefits of a weighting parameter evaluated my a)
OOB error, b) accuracy, c) precision for “high” classification, and d) precision for “low”
classifications. Ten RF models were generated and evaluated for optimal parameters (Table 1)
for each weighting scheme, prediction error was available in the RF model summary and values
for b), c), and d) were calculated from the associated confusion matrices.
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Figure 5. Variable importance plot for the optimal RF model colored by variable
category. Biotic variables refer to phytoplankton- or zooplankton-related variables, weather
refers to precipitation and discharge variables, and chemical refers to any geochemical water
variables.
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Figure 6. Time series plots for a) dissolved oxygen, b) pH, c) ammonium, and d) Secchi
depth. Trends are displayed for variables which showed significant change upon evaluation using
Seasonal Mann-Kendall test (data in Table 4.).
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Figure 7. Seasonal variation in H. akashiwo illustrated by box plots. Samples were
collected from surface water (depth = 0.5 m) for the months of April-November over a 12 year
sampling period.
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Appendix II: Tables

Table 1. Parameter values tested in development of RF model. All combinations of
values were evaluated using OOB error, bold values are those closest to suggested values p� and
p� for typical RF construction.

Table 2. Evaluation of ideal weighting for "high" algal bloom density in RF model
development. All values were calculated as the mean of 10 trials with variance in parentheses.
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Table 3. Confusion matrix for the optimal RF model. Observations were classified
according to actual classification and classification predicted by the independently constructed
trees in the RF model.

Table 4. Seasonal Mann-Kendall statistics, p-values, and Theil-Sen's slope calculated for
surface (0.5 m below surface), middle (0.15 m below surface), and deep (3.0 m below surface).
Bold values with stars indicate significance at α = 0.05.
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